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Lecture 7
Supply Rate Constructions and Quadratic Constraints, Part I

Lecturer: Bin Hu, Date:02/07/2019

As we have already seen in the past lectures, one way to analyze the troublesome element
A is to replace it with some quadratic supply rate conditions that can be directly plugged
in some LMIs for stability analysis.

How to construct supply rate conditions becomes a key issue for such analysis. For-
tunately, many such supply rate conditions have already been documented in the controls
literature. In today’s lecture, we will look at a few basic ones including

1. Small gain,
2. Passivity,
3. Sector bound.

These conditions are also called “quadratic constraints”. For simplicity, we will first talk
about the pointwise versions of these conditions. Then we will briefly discuss the “integral”
versions of these conditions which are the so-called integral quadratic constraints (IQCs).

7.1 Pointwise Quadratic Constraints

Consider a perturbation operator A that maps v to w in a static manner, i.e. wy is completely
determined by v,. The pointwise quadratic constraint just enforces the following inequality
on the input/output pair of A:

{“’“ - ”**}T M {“k - ”**1 <0, (7.1)
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where M is a symmetric matrix, and (w*,v*) are typically determined by the fixed points
of the feedback interconnection F,(G,A). The terminology “pointwise” just means that
we require the above inequality to hold for all k. Clearly, many supply rate conditions
that we have used so far are in the form of such pointwise quadratic constraints. Suppose
v — 0" = C(& — £%). Then the quadratic constraint (7.1) just gives the following supply

rate condition
g—¢ 1 ([c o, [c 0]\ [&-¢
[wk—w*] ([0 [] M[O [}) {wk—w*} <0.

For now, we just focus on how to obtain the quadratic constraint (7.1).
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7.1.1 Small gain bound

Suppose A is bounded in the sense that we have ||wy — w*|| < L|jvx, — v*||. The parameter L
can be viewed as the input-output gain of the operator A. The small gain bound [jwy, — w*|| <
L|lvy, — v*|| is equivalent to the quadratic inequality |[wy — w*||* — L?||vx — v*[|* < 0 which
can be rewritten as the following quadratic constraint:

«7 T 2 *
Vp — U LT 0| |v.—w
{wk — w*} [ 0 I] {wk — w*} = 0. (7.2)

This is the most commonly-used quadratic constraint. Now let’s see a few examples.

e Uncertainty in a multiplicative form: Let A map v to w as wy = 0xvr where J; is a
matrix changing with k. If we know the Frobenius norm of d; is bounded above by L
for all k, then we have the small gain bound (7.2) for (v*,w*) = (0,0).

e Gradients of L-smooth functions: Let A map v to w as wy = V f(vg) where f is L-
smooth. Then we have the small gain bound (7.2) holds for any reference point (v*, w*)
satisfying w* = V f(v*).

7.1.2 Passivity

In its simplest form, passivity can be used to describe a function that is in the first and third
quadrants. For illustrative purposes, consider a scaler case. Suppose wy = ¢(v;) where the
function ¢ : R — R satisfies ¢(0) = 0 and is in the first and third quadrants. Clearly v, and
wy, are both scalers in this case. If v, > 0, we have wy, > 0. If v, < 0, we have w;, < 0.
Hence we always have w] vy, > 0. This is the basic form of passivity.

A slightly more general form of passivity gives the constraint (wy — w*)7 (v — v*) > 0
when (vg, wy) are vectors and (potentially non-zero) reference points (v*, w*) are used. The
passivity condition can be rewritten as the following quadratic constraint (verify it!):

v —v* ] 0 I | v, —v*
k— — k—
{wk — w*} {—[ 0 } [wk — w*} = 0. (7.3)

Example: Gradients of Convex Functions. Let A map v to w as wy = V f(vy) where
f is a convex function. By definitions, the following inequalities hold for any (v, v*):

floe) = F() = V(W) (op = v7)
F@) = fox) = Vf(ve) T (0" = vg)

Summing the above two inequalities directly leads to the passivity condition (wy —w*)T (vy, —
v*) > 0. Therefore, gradients of convex functions satisfy the passivity condition.
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7.1.3 Sector Bound

Originally sector bound was used to describe a function that is in a sector formed by two
lines whose slopes are m and L. First we consider a scaler case. Suppose wy = ¢(vy) where
the function ¢ : R — R satisfies ¢(0) = 0 and is in a sector formed by two lines whose slopes
are m and L. For simplicity, we assume L > m. Clearly the sector assumption just ensures
(Lvy — wy,) " (wy, — muy,) > 0. This is the basic form of the sector bound condition.

Now we can introduce the more general form of the sector bound condition that gives the
constraint (L(vy — v*) — (wp — w*))" (wp — w* — m(vy, — v*)) > 0 when (vy, wy) are vectors
and the reference points (v*,w*) are allowed to be non-zero. The sector bound condition
can be rewritten as the following quadratic constraint (verify it!):

o T oo T P e <o (7.4)

Example: Gradients of L-Smooth m-Strongly Convex Functions. Let A map v to
w as wy, = V f(vg) where f is L-smooth and m-strongly convex. Then A satisfies the sector
bound condition (7.4). We have used this condition to prove the linear convergence rate of
the gradient method in the previous lectures.

7.2 Integral Quadratic Constraints

In general, A is just an operator that maps a sequence {v;} to another sequence {wy}. In
controls literature, we typically confine A to be a causal operator in the sense that wy is
completely determined by {vg,v1,...,v,}. Here A is not static anymore. There may be
dynamics involved in A. Examples include norm-bounded LTI uncertainty and time-varying
delays. For such type of A, the pointwise quadratic constraints no longer hold. However,
the quadratic constraints may hold when we sum them. Specifically, the integral quadratic
constraints (IQCs) just enforce the following inequality for any N,

N T
Sy
wy, — w*

WE — W
k=0 K

M{U’“—U*} <0, (7.5)

Originally the above type of quadratic constraints were developed in continuous-time
domain where the quadratic forms are integrated over the time horizon. So it is called
“integral” quadratic constraints. For discrete-time operators, we just sum things up. We
require (7.5) to hold for any N. In controls literature, this type of constraints are “hard”
IQCs. We will briefly talk about “soft” IQCs in some future lecture when we discuss the
KYP lemma. For now, we focus on hard IQCs that are in the form of (7.5). Hard IQCs can
be directly incorporated into the dissipation inequality framework. Typically hard IQCs lead
to a supply rate condition ij:o S (&, wi) < 0. Suppose we have constructed a dissipation
inequality V (&pr1) — V(&) < S(&k,wk). Now we do not have S < 0 for all k. However,
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we can first sum up the dissipation inequality from k& = 0 to N to get V({nv1) < V(&) +
S o S(&k,wi). Now using the new supply rate condition Y, S(&, wi) < 0, we obtain
V(€ns+1) < V(&). Hence the internal energy is bounded. The physical interpretation is
that as long as the total energy supplied to the system (which is equal to ZLVZO S(&k, wy))
is non-positive, the internal energy is not going to be larger than the initial energy. We will
talk about how to use IQCs for convergence rate analysis later. There is a routine for that.

IQCs are more general than pointwise quadratic constraints. Whenever we have
the pointwise quadratic constraint (7.1), we immediately have an IQC in the form of (7.5) by
summing the constraints from £ = 0 to N. The reverse direction is not always true. When
A has dynamics and memory, it is very common that we will only be able to construct IQCs.

Example: A general version of small gain bound. Consider a general causal operator
A. A general version of the small gain bound enforces the following inequality for the
input/output pair of A:

N N
D lwn —w' P < L2 o — o],
k=0 k=0

This bound is equivalent to the following IQC:

i {U’“ B v**]T [_62[ ﬂ {”’“ B ”**] <0, (7.6)
—o W —w W —w

In general, when A is the so-called “bounded” operator, we will always have the above small
gain IQC. For example, if A is an unknown stable LTI system whose H,, norm is L, then
we will not have a pointwise small gain bound but (7.6) still holds with v* = w* = 0. You
can verify a similar fact when A is a time-varying delay. In many situations, even for static
A, we can construct useful IQCs to complement the use of pointwise constraints. We will
see more examples in future lectures.



