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Lecture 8
Supply Rate Constructions and Quadratic Constraints, Part II
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In the last lecture, we have talked about a few commonly-used quadratic constraints
including small gain bound, passivity, and sector bound. In today’s lecture, let’s look at
several tricks for selecting and manipulating quadratic constraints.

8.1 Redundancy in Quadratic Constraints

It is OK to allow some redundancy when choosing the quadratic constraints. We will il-
lustrate this by an example. Recall that the sector bound condition gives the following
quadratic inequality with L ≥ m:[

vk − v∗
wk − w∗

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (8.1)

First, we discuss the connections between sector bound and other conditions.

1. If we let m = 0, we obtain the constraint[
vk − v∗
wk − w∗

]T [
0 −LI
−LI 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (8.2)

2. If we let L→∞, we have m
L
→ 0 and (8.1) reduces to[

vk − v∗
wk − w∗

]T [
2mI −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0. (8.3)

3. If we let L→∞ and m = 0, we recover the passivity condition[
vk − v∗
wk − w∗

]T [
0 −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0. (8.4)

4. If we let m = −L, (8.1) reduces to the small gain bound:[
vk − v∗
wk − w∗

]T [−L2I 0
0 I

] [
vk − v∗
wk − w∗

]
≤ 0. (8.5)
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An important fact. Given two symmetric matrices X1 and X2, if we can find λ ≥ 0 such

that X2 ≤ λX1, then the quadratic constraint

[
vk − v∗
wk − w∗

]T
X1

[
vk − v∗
wk − w∗

]
≤ 0 will directly

guarantee the other constraint

[
vk − v∗
wk − w∗

]T
X2

[
vk − v∗
wk − w∗

]
≤ 0. This is one version of the

famous S-procedure. Based on this procedure, if (v, w) satisfies the sector bound (8.1)
with L ≥ m, then (v, w) will also satisfy the bound[

vk − v∗
wk − w∗

]T [
2m0L0I −(m0 + L0)I

−(m0 + L0)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (8.6)

for any m0 ≤ m and L0 ≥ L. To prove this, we use the key relationship[
2mL0I −(m+ L0)I

−(m+ L0)I 2I

]
=
L0 −m
L−m

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
− L0 − L
L−m

[
2m2I −2mI
−2mI 2I

]
Therefore, if (8.1) holds and L0 ≥ L ≥ m, we have[

vk − v∗
wk − w∗

]T [
2mL0I −(m+ L0)I

−(m+ L0)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0.

We apply the same trick again and will get (8.6).

A consequence of the above fact is that if we know L ≥ m ≥ 0, the sector bound (8.1)
directly guarantees other constraints including (8.2), (8.3), (8.4), and (8.5). This leads to
an important question: Which quadratic constraint shall we use to construct the
dissipation inequality? Intuitively, (8.1) is the general one and should be used. However,
a combined use of (8.2), (8.3), and (8.4) may actually simplify the convergence rate proofs.
It seems that (8.4) is a redundant constraint here, but sometimes adding this constraint can
simplify the analytical proof.

Let’s look at the analysis of the gradient method again. Suppose f is L-smooth and
m-strongly convex. If we use (8.1), the resultant LMI condition is[

1− ρ2 −α
−α α2

]
− λ1

[
2mL −(m+ L)

−(m+ L) 2

]
≤ 0 (8.7)

where λ1 ≥ 0 is the only decision variable. If we combine (8.2), (8.3), and (8.4), the LMI
condition becomes[

1− ρ2 −α
−α α2

]
−
(
λ1

[
0 −L
−L 2

]
+ λ2

[
2m 1
1 0

]
+ λ3

[
0 −1
−1 0

])
≤ 0 (8.8)

where non-negative scalers (λ1, λ2, λ3) are all decision variables. In (8.7), we only have one
decision variable λ1. It is more difficult to figure out which negative semidefinite matrix we
should set the left side of (8.7) to. On the other hand, (8.8) has three variables and actually
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we can set the left side of (8.8) to be a diagonal matrix whenever α ≤ 1
L

. Given any α and
ρ2 = (1−mα)2, we just set λ1 = α2, λ2 = α, and λ3 = α−Lα2, and the left side of (8.8) just

becomes

[
−m2α2 0

0 −α2

]
≤ 0. This result can also be obtained by solving (8.7). However,

how to set up the left side of (8.7) is a little bit trickier.

Key message. Notice λ3 in (8.8) is just set up to cancel the off-diagonal terms of the
resultant 2 × 2 matrix. We can clearly see that adding the redundant constraint (8.4) just
helps us to cancel the off-diagonal terms and simplify the proof a little bit.

8.2 The Feedback Representation is Not Unique!

The feedback representation for an optimization method is not unique. Different feedback
formulations lead to different LMIs that require different supply rates. Some feedback rep-
resentations may yield simpler convergence proofs than the others. We will use the gradient
method as an example to illustrate this point.

In the previous lectures, we modeled the gradient method as Fu(G,∆) where ∆ = ∇f ,
and G is governed by an LTI model with (A,B,C) = (I,−αI, I). The matrix X in the

supply rate is

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
, and the resultant LMI condition is (8.7). We have

to handle the non-zero off-diagonal term when choosing λ.
Alternatively, we can model the gradient method as the following feedback model:

ξk+1 = wk

vk = ξk

wk = vk − α∇(vk)

In this case, G is described by an LTI model with A = 0, B = I, and C = I. The perturbation
operator ∆ maps v to w as wk = vk − α∇(vk). Since A = 0, we have ATPB = BTPA = 0.
Therefore, we can formulate the following new LMI condition:[

−ρ2 0
0 1

]
≤ λX (8.9)

where X is a 2× 2 symmetric matrix such that[
vk − v∗
wk − w∗

]T
(X ⊗ I)

[
vk − v∗
wk − w∗

]
≤ 0. (8.10)

How to obtain X from existing quadratic constraints on ∇f? When f is L-smooth
and m-strongly convex, we know the following quadratic constraint holds[

vk − v∗
∇f(vk)−∇f(v∗)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗

∇f(vk)−∇f(v∗)

]
≤ 0. (8.11)
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However, now we have wk = vk − α∇f(vk). Can we just manipulate the above quadratic
constraint to describe the relationship between v and w? The answer is yes! Just notice
∇f(vk) = (vk−wk)/α (this is equivalent to wk = vk−α∇f(vk)). Therefore, there is a linear

mapping from

[
vk − v∗
wk − w∗

]
to

[
vk − v∗

∇f(vk)−∇f(v∗)

]
:

[
vk − v∗

∇f(vk)−∇f(v∗)

]
=

[
I 0
1
α
I − 1

α
I

] [
vk − v∗
wk − w∗

]
(8.12)

where w∗ = v∗ = x∗. All we need to do is to substitute the above equation into (8.11) and
obtain X as

X =

[
I 0
1
α
I − 1

α
I

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
I 0
1
α
I − 1

α
I

]
=

1

α2

[
2(Lα− 1)(mα− 1) (m+ L)α− 2

(m+ L)α− 2 2

]
Consequently, the LMI (8.9) becomes[

−ρ2 0
0 1

]
≤ λ

α2

[
2(Lα− 1)(mα− 1) (m+ L)α− 2

(m+ L)α− 2 2

]
(8.13)

This LMI leads to simpler convergence rate proofs of the gradient method for the following
two stepsize choices.

• Case 1: For α = 2
m+L

, the off-diagonal term in (8.13) just becomes 0, and we only need

to look at the diagonal terms. Setting λ = α2

2
leads to ρ = L−m

L+m
.

• Case 2: For α = 1
L

, the LMI condition becomes[
−ρ2 0

0 1

]
≤ L2λ

[
0 m

L
− 1

m
L
− 1 2

]
We can simply choose λ = 1

L2 and ρ = 1 − m
L

to satisfy the above LMI. Although we
have non-zero off-diagonal terms here, the first entry of the LMI depends on ρ2 and is
independent of λ. This makes the analytical proof simpler.

Key message. From the above example, we can see that the feedback representations for
an optimization method are not unique and some of them may lead to simpler convergence
rate proofs. Although the feedback representation can be different, one can still obtain
quadratic constraints for the new ∆ by manipulating known quadratic constraints.
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8.3 Manipulating IQCs via Linear Mapping

The example in the last section actually demonstrates an important trick. Suppose we have
some IQC (notice IQCs are more general than pointwise quadratic constraints) to couple hk
and uk, i.e.

N∑
k=0

[
hk − h∗
uk − u∗

]T
M

[
hk − h∗
uk − u∗

]
≤ 0. (8.14)

If we have the following linear mapping[
hk − h∗
uk − u∗

]
= H

[
vk − v∗
wk − w∗

]
, (8.15)

then we can immediately obtain an IQC for v and w:

N∑
k=0

[
vk − v∗
wk − w∗

]T
(HTMH)

[
vk − v∗
wk − w∗

]
≤ 0. (8.16)
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