ECE 598: Interplay between Control and Machine Learning Spring 2019 Lecture 9 Supply Rate Constructions for Stochastic Finite-Sum Methods Lecturer: Bin Hu, Date:02/14/2019

Now we are ready to construct supply rates for stochastic finite-sum methods. In many situations, the analysis of stochastic finite-sum methods only require simple supply rates that can be obtained by manipulating the quadratic constraints covered in the last two lectures. First we will focus on SAGA-like methods. Then we will briefly discuss SVRG which is another important finite-sum method.

9.1 Supply Rates for SAGA-Like Methods

Recall that SAGA-like methods can be represented as $F_u(G, \Delta)$ where G is a jump system and the operator Δ maps v to w as

$$w_{k} = \begin{bmatrix} \nabla f_{1}(v_{k}) \\ \nabla f_{2}(v_{k}) \\ \vdots \\ \nabla f_{n}(v_{k}) \end{bmatrix}$$
(9.1)

For this operator Δ , we want to construct pointwise quadratic constraints on the input/output pair (v, w):

$$\begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} M \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix} \le 0,$$
(9.2)

where M is a symmetric matrix, and (w^*, v^*) are determined by the fixed points of the feedback interconnection $F_u(G, \Delta)$. For SAGA, we know $v^* = x^*$ and $w^* = \left[\nabla f_1(x^*)^T \cdots \nabla f_n(x^*)^T\right]$ where $\nabla f(x^*) = \frac{1}{n} \sum_{k=1}^n \nabla f_i(x^*) = 0$.

Again, if we know $v_k - v^* = C(\xi_k - \xi^*)$, the above quadratic constraint (9.2) just gives the following supply rate condition

$$\begin{bmatrix} \xi_k - \xi^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix}^{\mathsf{T}} M \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} \right) \begin{bmatrix} \xi_k - \xi^* \\ w_k - w^* \end{bmatrix} \le 0.$$

Hence we just focus on how to obtain the quadratic constraint (9.2). Various assumptions on f_i and f can be converted into inequalities in the form of (9.2). Now let's look at a few concrete examples. • Assumption 1: f_i is L-smooth and m-strongly convex. In this case, we know

$$\begin{bmatrix} v_k - v^* \\ \nabla f_i(v_k) - \nabla f_i(v^*) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ \nabla f_i(v_k) - \nabla f_i(v^*) \end{bmatrix} \le 0.$$
(9.3)

We need to make use of the following key relation:

$$w_{k} - w^{*} = \begin{bmatrix} \nabla f_{1}(v_{k}) - \nabla f_{1}(v^{*}) \\ \nabla f_{2}(v_{k}) - \nabla f_{2}(v^{*}) \\ \vdots \\ \nabla f_{n}(v_{k}) - \nabla f_{n}(v^{*}) \end{bmatrix}$$
(9.4)

which leads to $\nabla f_i(v_k) - \nabla f_i(v^*) = (e_i^{\mathsf{T}} \otimes I)(w_k - w^*)$ where e_i is a vector whose *i*-th entry is 1 and all other entries are 0. Therefore, we have

$$\begin{bmatrix} v_k - v^* \\ \nabla f_i(v_k) - \nabla f_i(v^*) \end{bmatrix} = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^\mathsf{T} \otimes I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}$$
(9.5)

Substituting the above equation into (9.3) leads to

$$\begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix} \le 0$$

Therefore, we can just choose $M = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}$

• Assumption 2: f is L-smooth and m-strongly convex. In this case, we know

$$\begin{bmatrix} v_k - v^* \\ \nabla f(v_k) - \nabla f(v^*) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ \nabla f(v_k) - \nabla f(v^*) \end{bmatrix} \le 0.$$
(9.6)

Based on (9.4), we have $\nabla f(v_k) - \nabla f(v^*) = \frac{1}{n} (e^{\mathsf{T}} \otimes I)(w_k - w^*)$ where $e := \sum_{i=1}^n e_i$ is a vector whose entries are all 1. Therefore, we have

$$\begin{bmatrix} v_k - v^* \\ \nabla f(v_k) - \nabla f(v^*) \end{bmatrix} = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n} e^{\mathsf{T}} \otimes I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}$$

Substituting the above equation into (9.6) leads to

$$\begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n} e^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n} e^{\mathsf{T}} \otimes I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix} \le 0.$$

Therefore, we can just choose $M = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n} e^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n} e^{\mathsf{T}} \otimes I \end{bmatrix}$.

• Assumption 3: f_i is L-smooth but may not be convex. In this case, we know

$$\begin{bmatrix} v_k - v^* \\ \nabla f_i(v_k) - \nabla f_i(v^*) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -L^2 I & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ \nabla f_i(v_k) - \nabla f_i(v^*) \end{bmatrix} \le 0.$$
(9.7)

Similarly, we can substitute (9.5) into (9.7) and get

$$\begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -L^2 I & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix} \le 0$$

Therefore, we can just choose $M = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -L^2 I & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & e_i^{\mathsf{T}} \otimes I \end{bmatrix}.$

• Assumption 4: f satisfies the "one-point convexity" condition:

$$\begin{bmatrix} v_k - x^* \\ \nabla f(v_k) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} v_k - x^* \\ \nabla f(v_k) \end{bmatrix} \le 0.$$
(9.8)

Notice the difference between (9.8) and (9.6) is that v^* is allowed to be any point in (9.6). Due to the facts $v^* = x^*$ and $\frac{1}{n}(e^{\mathsf{T}} \otimes I)w^* = \frac{1}{n}\sum_{i=1}^{n} \nabla f_i(x^*) = 0$, we still have $\nabla f(v_k) - \nabla f(v^*) = \frac{1}{n}(e^{\mathsf{T}} \otimes I)(w_k - w^*)$. Similar to before, we can just choose $M = \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n}e^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(L+m)I \\ -(L+m)I & 2I \end{bmatrix} \begin{bmatrix} I & 0_{p \times (np)} \\ 0 & \frac{1}{n}e^{\mathsf{T}} \otimes I \end{bmatrix}^{\mathsf{T}}$.

How to use the above quadratic constraints? Depending on the assumptions on f_i and f, we can choose multiple M_j (j = 1, ..., J) accordingly and formulate the following LMI

$$\sum_{i=1}^{n} \left(p_i \begin{bmatrix} A_i^{\mathsf{T}} P A_i - \rho^2 P & A_i^{\mathsf{T}} P B_i \\ B_i^{\mathsf{T}} P A_i & B_i^{\mathsf{T}} P B_i \end{bmatrix} \right) \le \sum_{j=1}^{J} \lambda_j \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix}^{\mathsf{T}} M_j \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix},$$

where the positive definite matrix P and non-negative scalers λ_j are decision variables. When the assumptions on f_i and f change, typically one only needs to modify M_j accordingly. The convergence rates of SAGA and several standard finite-sum methods (SDCA, Finito, etc) can be obtained using the above quadratic constraints and LMI formulations. However, the convergence rate proof of SAG is more subtle and requires the so-called Lure-Postnikov-type Lyapunov function. We will talk about that in the next lecture.

9.2 Supply Rates for SVRG

Now we briefly discuss SVRG that is built upon the idea of variance reduction. Originally we model the SG method as $F_u(G, \Delta)$ where Δ maps v to w as $w_k = \nabla f_{i_k}(v_k)$. We directly developed the supply rate condition for Δ and obtain some condition in the form of $\mathbb{E}S \leq C$ where C is a positive constant. A physical interpretation is that the stochastic gradient $\nabla f_{i_k}(v_k)$ keeps on supplying energy into the system and hence the system is not going to converge to its fixed point. Now we take a closer look. We can actually rewrite the SG method as

$$x_{k+1} = x_k - \alpha(\nabla f_{i_k}(x_k) - \nabla f_{i_k}(x^*)) - \alpha \nabla f_{i_k}(x^*)$$

If we choose $\xi_k = x_k$, $v_k = \xi_k$, $w_k = \begin{bmatrix} \nabla f_{i_k}(v_k) - \nabla f_{i_k}(x^*) \\ \nabla f_{i_k}(x^*) \end{bmatrix}$, A = I, $B = \begin{bmatrix} -\alpha I & -\alpha I \end{bmatrix}$, and C = I, we obtain a new feedback representation for the SG method. Now the input w_k has two entries. Actually it is trivial to construct a supply rate condition to couple the first entry of w_k with $x_k - x^*$. For example, if f_i is *L*-smooth and *m*-strongly convex, the following inequality holds in an almost sure sense

$$\begin{bmatrix} v_k - x^* \\ \nabla f_{i_k}(v_k) - \nabla f_{i_k}(x^*) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(m+L)I \\ -(m+L)I & 2I \end{bmatrix} \begin{bmatrix} v_k - x^* \\ \nabla f_{i_k}(v_k) - \nabla f_{i_k}(x^*) \end{bmatrix} \le 0.$$
(9.9)

Hence the first entry of w_k is not delivering energy into the system. The troublesome term is the second entry of w_k . The term $\nabla f_{i_k}(x^*)$ keeps on delivering energy into the system.

SVRG modifies the second entry of w_k as $\nabla f_{i_k}(x^*) - \nabla f_{i_k}(x_0) + \nabla f(x_0)$. Now this input depends on the initial state x_0 . One will be able to obtain a supply rate condition in the form of $\mathbb{E}S \leq L ||x_0 - x^*||^2$. SVRG is an epoch-based algorithm and at the beginning of each epoch it will update x_0 as the last (or average) iterate of the last epoch. Notice for each epoch, one needs to evaluate one full gradient $\nabla f(x_0)$. Hence the selection of the epoch length is going to affect the performance of SVRG. Within one epoch, x_0 is a fixed vector. As more epochs are run, x_0 gets closer to x^* . The supplied energy eventually decreases to 0 as x_0 converges to x^* . This is a rough physical explanation for the convergence mechanism of SVRG. The dissipation inequality approach can be applied to analyze SVRG and its accelerated variant Katyusha. We omit the details here.