
ECE 598: Interplay between Control and Machine Learning Spring 2019

Lecture 9
Supply Rate Constructions for Stochastic Finite-Sum Methods

Lecturer: Bin Hu, Date:02/14/2019

Now we are ready to construct supply rates for stochastic finite-sum methods. In many
situations, the analysis of stochastic finite-sum methods only require simple supply rates that
can be obtained by manipulating the quadratic constraints covered in the last two lectures.
First we will focus on SAGA-like methods. Then we will briefly discuss SVRG which is
another important finite-sum method.

9.1 Supply Rates for SAGA-Like Methods

Recall that SAGA-like methods can be represented as Fu(G,∆) where G is a jump system
and the operator ∆ maps v to w as

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

 (9.1)

For this operator ∆, we want to construct pointwise quadratic constraints on the input/output
pair (v, w): [

vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0, (9.2)

where M is a symmetric matrix, and (w∗, v∗) are determined by the fixed points of the feed-
back interconnection Fu(G,∆). For SAGA, we know v∗ = x∗ and w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
where ∇f(x∗) = 1

n

∑n
k=1∇fi(x∗) = 0.

Again, if we know vk − v∗ = C(ξk − ξ∗), the above quadratic constraint (9.2) just gives
the following supply rate condition[

ξk − ξ∗
wk − w∗

]T([
C 0
0 I

]T
M

[
C 0
0 I

])[
ξk − ξ∗
wk − w∗

]
≤ 0.

Hence we just focus on how to obtain the quadratic constraint (9.2). Various assumptions
on fi and f can be converted into inequalities in the form of (9.2). Now let’s look at a few
concrete examples.

9-1



ECE 598 Lecture 9 — 02/14/2019 Spring 2019

• Assumption 1: fi is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (9.3)

We need to make use of the following key relation:

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)

 (9.4)

which leads to ∇fi(vk)−∇fi(v∗) = (eTi ⊗ I)(wk − w∗) where ei is a vector whose i-th
entry is 1 and all other entries are 0. Therefore, we have[

vk − v∗
∇fi(vk)−∇fi(v∗)

]
=

[
I 0p×(np)

0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
(9.5)

Substituting the above equation into (9.3) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)

0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)

0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just chooseM =

[
I 0p×(np)

0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)

0 eTi ⊗ I

]
.

• Assumption 2: f is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇f(vk)−∇f(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f(vk)−∇f(v∗)

]
≤ 0. (9.6)

Based on (9.4), we have ∇f(vk)−∇f(v∗) = 1
n
(eT ⊗ I)(wk −w∗) where e :=

∑n
i=1 ei is

a vector whose entries are all 1. Therefore, we have[
vk − v∗

∇f(vk)−∇f(v∗)

]
=

[
I 0p×(np)

0 1
n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
Substituting the above equation into (9.6) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)

0 1
n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)

0 1
n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0.

Therefore, we can just chooseM =

[
I 0p×(np)

0 1
n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)

0 1
n
eT ⊗ I

]
.

9-2



ECE 598 Lecture 9 — 02/14/2019 Spring 2019

• Assumption 3: fi is L-smooth but may not be convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [−L2I 0
0 I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (9.7)

Similarly, we can substitute (9.5) into (9.7) and get[
vk − v∗
wk − w∗

]T [
I 0p×(np)

0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)

0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just choose M =

[
I 0p×(np)

0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)

0 eTi ⊗ I

]
.

• Assumption 4: f satisfies the “one-point convexity” condition:[
vk − x∗
∇f(vk)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − x∗
∇f(vk)

]
≤ 0. (9.8)

Notice the difference between (9.8) and (9.6) is that v∗ is allowed to be any point
in (9.6). Due to the facts v∗ = x∗ and 1

n
(eT ⊗ I)w∗ = 1

n

∑n
i=1∇fi(x∗) = 0, we still

have ∇f(vk) − ∇f(v∗) = 1
n
(eT ⊗ I)(wk − w∗). Similar to before, we can just choose

M =

[
I 0p×(np)

0 1
n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)

0 1
n
eT ⊗ I

]
.

How to use the above quadratic constraints? Depending on the assumptions on fi
and f , we can choose multiple Mj (j = 1, . . . , J) accordingly and formulate the following
LMI

n∑
i=1

(
pi

[
AT

i PAi − ρ2P AT
i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]
,

where the positive definite matrix P and non-negative scalers λj are decision variables. When
the assumptions on fi and f change, typically one only needs to modify Mj accordingly. The
convergence rates of SAGA and several standard finite-sum methods (SDCA, Finito, etc)
can be obtained using the above quadratic constraints and LMI formulations. However, the
convergence rate proof of SAG is more subtle and requires the so-called Lure-Postnikov-type
Lyapunov function. We will talk about that in the next lecture.

9.2 Supply Rates for SVRG

Now we briefly discuss SVRG that is built upon the idea of variance reduction. Originally
we model the SG method as Fu(G,∆) where ∆ maps v to w as wk = ∇fik(vk). We directly
developed the supply rate condition for ∆ and obtain some condition in the form of ES ≤ C

9-3



ECE 598 Lecture 9 — 02/14/2019 Spring 2019

where C is a positive constant. A physical interpretation is that the stochastic gradient
∇fik(vk) keeps on supplying energy into the system and hence the system is not going to
converge to its fixed point. Now we take a closer look. We can actually rewrite the SG
method as

xk+1 = xk − α(∇fik(xk)−∇fik(x∗))− α∇fik(x∗)

If we choose ξk = xk, vk = ξk, wk =

[
∇fik(vk)−∇fik(x∗)

∇fik(x∗)

]
, A = I, B =

[
−αI −αI

]
, and

C = I, we obtain a new feedback representation for the SG method. Now the input wk has
two entries. Actually it is trivial to construct a supply rate condition to couple the first entry
of wk with xk − x∗. For example, if fi is L-smooth and m-strongly convex, the following
inequality holds in an almost sure sense[

vk − x∗
∇fik(vk)−∇fik(x∗)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − x∗

∇fik(vk)−∇fik(x∗)

]
≤ 0. (9.9)

Hence the first entry of wk is not delivering energy into the system. The troublesome term
is the second entry of wk. The term ∇fik(x∗) keeps on delivering energy into the system.

SVRG modifies the second entry of wk as ∇fik(x∗)−∇fik(x0) +∇f(x0). Now this input
depends on the initial state x0. One will be able to obtain a supply rate condition in the form
of ES ≤ L‖x0 − x∗‖2. SVRG is an epoch-based algorithm and at the beginning of each epoch
it will update x0 as the last (or average) iterate of the last epoch. Notice for each epoch, one
needs to evaluate one full gradient ∇f(x0). Hence the selection of the epoch length is going
to affect the performance of SVRG. Within one epoch, x0 is a fixed vector. As more epochs
are run, x0 gets closer to x∗. The supplied energy eventually decreases to 0 as x0 converges
to x∗. This is a rough physical explanation for the convergence mechanism of SVRG. The
dissipation inequality approach can be applied to analyze SVRG and its accelerated variant
Katyusha. We omit the details here.

9-4


