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Overview
• Analyzing TD learning algorithms with linear function approximators
by exploiting their connections to Markov jump linear systems (MJLS)

• Using MJLS theory to characterize the exact behaviors of the mean and
covariance of estimation errors for many TD learning algorithms

• Tight matrix spectral radius condition to guarantee the convergence of
the covariance matrix of TD estimation error under Markov assumption

• Formula for the exact limit of the Mean Square Error (MSE) of TD

• Convergence rate for TD learning with small or large learning rate

• Computing the upper and lower bounds on the MSE for TD learning.

Background: LTI Systems and MJLS
• A linear time-invariant (LTI) system is given by: xk+1 = Hxk + Guk

where xk and uk are the state and input. Given x0 and {uk}, one has

xk = (H)kx0 +
k−1∑
t=0

(H)k−1−tGut. (1)

• Let zk be a Markov chain sampled from a finite state space S. A MJLS
is governed by the following state-space model: ξk+1 = H(zk)ξk +G(zk)yk

where H(zk) and G(zk) are matrix functions of zk. A key result for MJLS
is that the exact formulas for mean qk and covariance Qk are available,

where qk
i = E

(
ξk1{zk=i}

)
, Qk

i = E
(
ξk(ξk)T1{zk=i}

)
, µk = Eξk,

Qk = E
(
ξk(ξk)T) qk =

[
qk

1 . . . qk
n

]T
Qk =

[
Qk

1 Qk
2 . . . Qk

n

]
.

TD learning as MJLS
TD learning variants such as TD, TDC, GTD, GTD2, A-TD, and
D-TD are special cases of the following linear stochastic recursion:

ξk+1 = ξk + α
(
A(zk)ξk + b(zk)

)
(2)

which is a MJLS with H(zk) = I+αA(zk), G(zk) = αb(zk), and yk = 1∀k.
Example: TD(0) θk+1 = θk−αφ(sk)

(
(φ(sk)− γφ(sk+1))Tθk − r(sk)

)
Suppose θ∗ is the vector that solves the projected Bellman equation. Let
zk =

[
(sk+1)T (sk)T]T and then rewrite the TD update as:

θk+1 − θ∗ =
(
I + αA(zk)

)
(θk − θ∗) + αb(zk)

where A(zk) = −φ(sk)(φ(sk)− φ(sk+1))T

b(zk) = φ(sk)
(
r(sk)− (φ(sk)− φ(sk+1))Tθ∗

)

TD learning under IID Assumption
Theorem 1 Consider a MJLS with Hi = I + αAi, Gi = αbi, and
yk = 1. Suppose {zk} is sampled from N using an IID distribution
P(zk = i) = pi. In addition, assume

∑n
i=1 pibi = 0. Then set H11 = I+αĀ,

H21 = α2∑n
i=1 pi(Ai ⊗ bi + bi ⊗Ai), and H22 = In2

ξ
+ α(I ⊗ Ā+ Ā⊗ I) +

α2∑n
i=1 pi(Ai ⊗Ai). We have[

µk+1

vec(Qk+1)

]
=
[
H11 0
H21 H22

] [
µk

vec(Qk)

]
+
[

0
α2∑n

i=1 pi(bi ⊗ bi)

]
(3)

The input for the above LTI model does not change with k. Therefore, if
σ(H22) < 1, the following exact formula holds[

µk

vec(Qk)

]
=
([
H11 0
H21 H22

])k ([
µ0

vec(Q0)

]
−
[

µ∞

vec(Q∞)

])
+
[

µ∞

vec(Q∞)

]
where µ∞ = limk→∞ µk = 0 and

vec(Q∞) = −α
(
I ⊗ Ā+ Ā⊗ I + α

n∑
i=1

pi(Ai ⊗Ai)
)−1( n∑

i=1
pi(bi ⊗ bi)

)

Stability Condition: LTI system (3) is stable if and only if H22 is
Schur stable. For TD learning to converge, it is important to choose
α such that σ(H22) < 1 for some given {Ai}, {bi} and {pi}. Assum-
ing α to be small, eigenvalue perturbation analysis to H22 suggests:
σ(H22) ≈ 1 + 2real

(
λmax real

(
Ā
))
α+O(α2). Hence as long as Ā

is Hurwitz, there exists sufficiently small α s.t. σ(H22) < 1.

Corollary 1 Consider TD update (2) with Ā being Hurwitz. Sup-
pose σ(H22) < 1 and P(zk = i) = pi∀i. Then δ∞: = limk→∞ E‖θk −
θ∗‖2 exists and is given by δ∞ = trace (Q∞). Additionally, the fol-
lowing Mean Square TD error bounds hold for some constant C0 and
any arbitrary small ε > 0 (the rate σ(H) is precise):

δ∞ − C0 (σ (H) + ε)k ≤ E‖θk − θ∗‖2≤ δ∞ + C0 (σ (H) + ε)k

Key Trade-off: For small α, one can use perturbation to show
limk→∞ E‖θk − θ∗‖2= O (α) and σ(H) ≈ 1 + real(λmax real(Ā))α +
O(α2). This gives the standard rate v.s. error trade-off.

TD learning under Markov assumption
Theorem 2 Consider the MJLS with Hi = I+αAi, Gi = αbi, and yk = 1.
Suppose {zk} is a Markov chain sampled from N using the transition matrix
P . In addition, define pk

i = P(zk = i) and set the augmented vector pk =[
pk

1 pk
2 . . . pk

n

]T. Clearly pk = (PT)kp0. Further denote the augmented
vectors as b =

[
bT

1 bT
2 . . . bT

n

]T, B̂ =
[
(b1 ⊗ b1)T . . . (bn ⊗ bn)T]T,

and set S(bi, Ai) = (bi ⊗ (I + αAi) + (I + αAi) ⊗ bi) then qk and vec(Qk)
are governed by the following state-space model:[

qk+1

vec(Qk+1)

]
=
[
H11 0
H21 H22

] [
qk

vec(Qk)

]
+
[
α((PT diag(pk

i ))⊗ Inξ)b
α2((PT diag(pk

i ))⊗ In2
ξ
)B̂

]
(4)

H11 = (PT ⊗ Inξ) diag(Inξ + αAi), H21 = α
(
PT ⊗ Inξ

)
diag(S(bi, Ai))

H22 = (PT ⊗ In2
ξ
) diag((Inξ + αAi)⊗ (Inξ + αAi))

Key Difference: The input depends on pk which changes over k. However,
if the input converges linearly, the overall convergence behavior is similar.
Exact Solution: The augmented mean qk and covariance Qk can still be
exactly computed by (1).
Stability Condition: The LTI system (4) is stable iff σ(H22) < 1.
We need to choose α such that σ(H22) < 1 for some given {Ai}, {bi},
P , and {p0}. Define, Ā =

∑n
i=1 p

∞
i Ai and let p∞ be the unique sta-

tionary distribution of zk. The eigenvalue perturbation analysis yields:
σ(H22) ≈ 1 + 2 real(λmax real(Ā))α + O(α2). Therefore, as long as Ā is
Hurwitz, there exists sufficiently small α such that σ(H22) < 1.

Corollary 2 Consider the TD update (2) with Ā being Hurwitz. Let
{zk} be a Markov chain sampled from N using the transition matrix
P. Suppose σ(H22) < 1. Assume pk → p∞, then we have:

q∞ = lim
k→∞

qk = α(I −H11)−1((PT diag(p∞i ))⊗ Inξ)b,

vec(Q∞) = α2(IN −H22)−1
(
α−2H21q

∞ + ((PT diag(p∞i ))⊗ In2
ξ
)B̂
)

δ∞ = lim
k→∞

E‖θk − θ∗‖2= (1T
n ⊗ vec(Inθ )T) vec(Q∞)

Assuming the geometric ergodicity, i.e. ‖pk − p∞‖≤ Cρ̃k, we have

δ∞−C0 max{σ(H)+ε, ρ̃}k ≤ E‖θk−θ∗‖2≤ δ∞+C0 max{σ(H)+ε, ρ̃}k.

where C0 is a constant and ε is an arbitrary small positive number.

Key Messages:

• The MSE has an exact limit δ∞. One can show δ∞ = O(α).

• For small α, the rate is σ(H) ≈ 1 + real(λmax real(Ā))α+O(α2).

• Trade-off: rate 1 + real(λmax real(Ā))α+O(α2) v.s. error O(α).

• For large α, the rate is max{σ(H) + ε, ρ̃} and cannot be faster
than ρ̃ (the mixing rate of zk). IID case does not have such an issue.


