Characterizing the Exact Behaviors of Temporal Difference "ECE Hinois Jo0|
j[ imr1iNoOis Learning Algorithms Using Markov Jump System Theory

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN BIN HU AND USMAN AHMED SYED
® COORDINATED

COORDINATED SCIENCE LAB AND ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT CSI— SCIENCE LAB
UNIVERSITY OF ILLINOIS URBANA CHAMPAIGN

™

Overview

e Analyzing TD learning algorithms with linear function approximators Theorem 1 Consider a MJLS with H;, = I + «A;, G; = ab;, and

by exploiting their connections to Markov jump linear systems (MJLS) y* = 1. Suppose {zF} is sampled from N wusing an IID distribution

P(z* = 1) = p;. In addition, assume > ., pib; = 0. Then set H11 = [+aA,

Hor = a2 2?21 pi(A; @b +b; @A), and Has = L2 + a(l © At A I)+ o such that o(Hs2) .< 1 for some given {Ai}, {bi}.and {p;}. Assum-
S ing « to be small, eigenvalue perturbation analysis to Hoo suggests:

2N~ (A. .
a” ) i1 Pi(A; @ A;). We have o(Hsoo) ~ 1+ 2real ()\max real (A)) o+ O(a?). Hence as long as A
- is Hurwitz, there exists sufficiently small « s.t. o(Hs2) < 1.

TD learning under 1ID Assumption

Stability Condition: LTI system (3) is stable if and only if Hos is

Schur stable. For TD learning to converge, it is important to choose
e Using MJLS theory to characterize the exact behaviors of the mean and

covariance of estimation errors for many T'D learning algorithms

e Tight matrix spectral radius condition to guarantee the convergence ot
the covariance matrix of TD estimation error under Markov assumption ot [ Hy o) owE ] ] 0

_Vec(@kﬂ)_ B Ho1  Hoo _vec(@k’)_ " _CVZ Z?:l pi(b; ® bi)_ (3) Corollary 1 Consider TD update (2) with A being Hurwitz. Sup-
pose o(Haz) < 1 and P(2F = i) = p;Vi. Then 6°°: = limy,_, o, E||0* —
0*||% ewists and is given by 0°° = trace (Q>). Additionally, the fol-
lowing Mean Square T'D error bounds hold for some constant Cy and
any arbitrary small € > 0 (the rate o(H) is precise):

e Formula for the exact limit of the Mean Square Error (MSE) of TD

The input for the above LTI model does not change with k. Therefore, if

e Convergence rate for TD learning with small or large learning rate 0(Haz) < 1, the following exact formula holds

N Computing the upper and lower bounds on the MSE for TD learning.

- k
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Background: LTI Systems and MJLS vee(QY)] - \[Har Haz|) \[vec(@)]  [vec(Q*)]) * [vec(Q>) 5% — Cy (0 (H) +2)% < E||0% — 0%)2< 6 + Cp (0 (H) + )"
e A linear time-invariant (LTI) system is given by: z*t1 = HaF + GuF where p* = limy o0 p* = 0 and Key Trade;ojj": };07“ small o, one can use perturbation to show
where z* and u" are the state and input. Given z¥ and {u*}, one has o -1, . 11mk2—>oo J 9 ~ 0%|°= O () and o(H) = 1 + real(Amaxreal (A))ax +
\VeC(QOO) — _q (I DAL AT L Oéqu;(Az' 2 Az)) (Zpi(bi 2 bz)) O(a®). This gives the standard rate v.s. error trade-off.
i=1 i=1

k—1
:Bk _ (H)kxO 4 Z(H)k_l_tgut. (1)
t=0 g .
e Let 2* be a Markov chain sampled from a finite state space S. A MJLS TD learning under Markov assumption

is governed by the following state-space model: £¥™1 = H(2%)&F + G (2%)yF , , B B .
where H (zk) and G (zk ) are matrix functions of 2. A key result for MJLS Theorem kZ Qonszder the MJLS with H; = I+&Ai.’ Gi = ab;, fw.bd y= 1 Corollary 2 Consider the TD update (2) with A beinag Hurwitz. Let
is that the exact formulas for mean ¢* and covariance Q¥ are available Suppose {2"} is a Markov chain sampled from N using the transition matriz k , : g : o .
7 P. In addition, define p* = P(z* = i) and set the augmented vector p* = {27} be a Markov chain sampled frgm Nogsmg the transition matrix
where ¢f =E (&"16—yy), QF =E(£"(§")"1102y), p" =EE", pyops .. me. Clearly p® = (P")*p°. Purther denote the augmented P Supg@ase (71.(7{2211 = 1°(}488;L_[m6)]31(?f£ dfatgh(e’/zoz)u)e;c}ve.)b
. ¢ = lim ¢" = a(l - iag(p; ne )b
) - ) . ) vectors as b = [b{ by ... bZ]T, B=|biob)" ... (by ®bn)T}T, k— 00 . :
Q@ =EEE)) =g o oal @ =0 Q3 . @l | [ and set S(bi, Ai) = (b @ (I + @A) + (I + ad;) @b;) then ¢ and vec(Q") | vec(Q™) = a®(Iy — Han) ™" (a7 Ha1q™ + ((PT diag(pi®)) @ L,2) B)
are governed by the following state-space model: N . . :
. R L T T g : 6° = lim E[0* — 6%|°= (15 ® vec(I,,)") vec(Q™)
TD learning as MJLS gk t? Hiyp O q* a((P" diag(p;)) @ In, )b oo . L L o
RN gy T o2((PT di (D)) @ 12)B (4) Assuming the geometric ergodicity, i.e. ||p® — p™=°||< C'p~, we have
TD learning variants such as TD, TDC, GTD, GTD2, A-TD, and vec(QY)] [Har Haz| |vec(Q7). “ (( tasp g/ |
D-TD are special cases of the following linear stochastic recursion: i = (PT & I, ) diag(In, + ad;), Hai = a (PT 2 Ing) diag(S(b;, A;)) 0°°—Co max{o(H)+e, ﬁ}k <K 9’“—9*“2§ 0 +Comax{o(H)+e, ﬁ}k,
Rl =8 + a (A(ZF)ER 4 b(2M)) (2) Hoo = (P' ® Ing) diag((l,, +ad;) @ (I, + ad;)) where Cy is a constant and < is an arbitrary small positive number.
which is a MJLS with H (%) = I+aA(2F), G(z*) = ab(z*), and y* = 1Vk. Key Difference: The input depends on p* which changes over k. However, Key Messages:
Example: TD(0) 61 = 9% —qgy(s*) ((¢(s’“) — yp(sFT1))THR — r(s’“)) it the input converges linearly, the overall convergence behavior is similar. |
Suppose 0* is the vector that solves the projected Bellman equation. Let Exact Solution: The augmented mean ¢* and covariance Q" can still be e The MSE has an exact limit 0°°. One can show 0 = O(a).
2= [(sFtYT  (sF)T ! and then rewrite the TD update as: exactly computed by (1). : ~ A 2
{ ) v P Stability Condition: The LTI system (4) is stable iff o(Ha2) < 1. o Forsmall a, the rate is o(H) ~ 1 + real(Amax rear (4) ) + O(a?).
g+l _ gx — (I—I—ozA(zk)) (0% — %) + ab(2") We need to choose o such thatna(Hgg) < 1 for some given {AZ}, {b;}, o Trade-off: rate 1 + real(Amax real(A))a + O(a?) v.s. error O(a).
P, and {p"}. Define, A = > "  p®A; and let p> be the unique sta-
where A(ZF) = —o(s")(d(s%) — p(s"TINT tionary distribution of z*. The eigenvalue perturbation analysis yields: e For large o, the rate is max{c(H) + ¢,p} and cannot be faster
0(Has) ~ 1 + 2real(Amaxreal(A))a + O(a?). Therefore, as long as A is than p (the mixing rate of 2¥). IID case does not have such an issue.
_ b(z") = ¢(s") (r(s") — (d(s*) — p(s"T1)) " 6%) \Hurwitz, there exists sufficiently small « such that o(Haz) < 1.




