Lectures

  • Lecture 1 (08/22/2023): An Overview of "Control for Learing"

  • Slide

  • Lecture 2 (08/24/2023): An Overview of "Learning for Control"

  • Slide

  • Lecture 3 (08/29/2023): Unifying the Analysis in Control and Optimization via Semidefinite Programs, Part I

  • Lecture Note

  • Lecture 5 (09/05/2023): Policy-Based Reinforcement Learning for Control, Part I

  • Lecture Note

  • Lecture 8 (09/14/2023): A Control Perspective on Certifiably Robust Neural Networks, Part II

  • Lecture Note

  • Lecture 10 (09/21/2023): Control Barrier Functions for Safety of Perception-Based Control, Part II

  • Lecture Note

  • Lecture 12 (09/28/2023): Control Tools for Stochastic Optimization and Supervised Learning, Part II

  • Lecture Note, Main Reference

  • Lecture 14 (10/05/2023): Imitation Learning for Control, Part II

  • We will use the slides from Prof. Lars Lindemann (USC). The slides will be distributed via email.

    Main Reference

  • Lecture 16 (10/12/2023): A Jump System Perspective on Temporal Difference Learning, Part II

  • Lecture Note

  • Lecture 18 (10/19/2023): Online Learning for Control, Part II

  • Main Reference

  • Lecture 20 (10/26/2023): Robust Control Tools for Distributed Optimization, Part II

  • Main Reference

  • Lecture 26 (11/16/2023): Neural Certificates for Control Systems, Part II

  • Main Reference

  • Lecture 29 (12/05/2023): Summary and Future Directions